Limited Memory Prediction for Linear Systems with Different types of Observation
نویسندگان
چکیده
This paper is concerned with distributed limited memory prediction for continuous-time linear stochastic systems with multiple sensors. A distributed fusion with the weighted sum structure is applied to the optimal local limited memory predictors. The distributed prediction algorithm represents the optimal linear fusion by weighting matrices under the minimum mean square criterion. The algorithm has the parallel structure and allows parallel processing of observations making it reliable since the rest faultless sensors can continue to the fusion estimation if some sensors occur faulty. The derivation of equations for error cross-covariances between the local predictors is the key of this paper. Example demonstrates effectiveness of the distributed limited memory predictor.
منابع مشابه
New Optimal Observer Design Based on State Prediction for a Class of Non-linear Systems Through Approximation
This paper deals with the optimal state observer of non-linear systems based on a new strategy. Despite the development of state prediction in linear systems, state prediction for non-linear systems is still challenging. In this paper, to obtain a future estimation of the system states, initially Taylor series expansion of states in their receding horizons was achieved to any specified order an...
متن کاملEigenvalue Assignment Of Discrete-Time Linear Systems With State And Input Time-Delays
Time-delays are important components of many dynamical systems that describe coupling or interconnection between dynamics, propagation or transport phenomena, and heredity and competition in population dynamics. The stabilization with time delay in observation or control represents difficult mathematical challenges in the control of distributed parameter systems. It is well-known that the stabi...
متن کاملA Software for Prediction of Periodic Response of Non-linear Multi Degree of Freedom Rotors Based on Harmonic Balances
It is the purpose of this paper to introduce a computer software that is developed for the analysis of general multi degree of freedom rotor bearing systems with non-linear support elements. A numerical-analytical method for the prediction of steady state periodic response of large order nonlinear rotor dynamic systems is addressed which is based on the harmonic balance technique. By utilizing ...
متن کاملA survey on RPL attacks and their countermeasures
RPL (Routing Protocol for Low Power and Lossy Networks) has been designed for low power networks with high packet loss. Generally, devices with low processing power and limited memory are used in this type of network. IoT (Internet of Things) is a typical example of low power lossy networks. In this technology, objects are interconnected through a network consisted of low-power circuits. Exampl...
متن کاملApplication of Linear Regression and Artificial NeuralNetwork for Broiler Chicken Growth Performance Prediction
This study was conducted to investigate the prediction of growth performance using linear regression and artificial neural network (ANN) in broiler chicken. Artificial neural networks (ANNs) are powerful tools for modeling systems in a wide range of applications. The ANN model with a back propagation algorithm successfully learned the relationship between the inputs of metabolizable energy (kca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1002.3339 شماره
صفحات -
تاریخ انتشار 2010